

Home Search Collections Journals About Contact us My IOPscience

High-temperature transformation in $\rm KH_2PO_4$ and $\rm RbH_2PO_4$ crystals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys.: Condens. Matter 13 9411

(http://iopscience.iop.org/0953-8984/13/42/302)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.226 The article was downloaded on 16/05/2010 at 15:00

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 13 (2001) 9411-9419

PII: S0953-8984(01)27145-8

High-temperature transformation in KH₂PO₄ and RbH₂PO₄ crystals

Jong-Ho Park¹, Kwang-Sei Lee¹ and Byung-Chun Choi²

¹ Department of Physics, Inje University, Kimhae 621-749, Kyungnam, Korea
² Department of Physics, Pukyong National University, Pusan 608-737, Korea

Received 24 July 2001 Published 5 October 2001 Online at stacks.iop.org/JPhysCM/13/9411

Abstract

The high-temperature phenomena exhibited by KH_2PO_4 and RbH_2PO_4 have been investigated by differential thermal analysis, thermogravimetric methods, and thermo-polarizing microscopy. The thermal transformations which appear at $T_p = 196$ °C in KH_2PO_4 and $T_p = 96$ °C in RbH_2PO_4 are endothermic in addition to showing weight loss. On heating further to beyond T_p , the thermal transformation shows several endothermic peaks and there is weight loss in KH_2PO_4 and RbH_2PO_4 . It has been observed by thermo-polarizing microscopy that until T_p is exceeded, uniaxial interference figures are exhibited by crystals of KH_2PO_4 and RbH_2PO_4 , with cracks and chemical change at the surface of KH_2PO_4 near $T_p \sim 192$ °C and RbH_2PO_4 near $T_p \sim 92$ °C. The high-temperature phenomena exhibited by KH_2PO_4 and RbH_2PO_4 near T_p could indicate not changes from tetragonal to monoclinic structure but chemical decomposition at the surface of the crystals such as that described by $nMH_2PO_4 \rightarrow M_nH_2P_nO_{3n+1} + (n-1)H_2O$ (M = K, Rb)

1. Introduction

 KH_2PO_4 and RbH_2PO_4 are members of the KDP family of H-bonded crystals. There has been, for a long time, some dispute regarding whether the high-temperature phenomena exhibited by KH_2PO_4 and RbH_2PO_4 crystal indicate high-temperature phase transitions (HTPTs) or thermal decomposition [1–27]. Most investigators have considered the high-temperature anomaly exhibited by KH_2PO_4 and RbH_2PO_4 near T_p as indicating a structural phase transition; these investigators used various experimental methods [1–15], e.g., optical observations and measurements of thermal properties, x-ray diffraction, dielectric constants, Raman scattering, electrical conductivity, infrared reflectivity, nuclear magnetic resonance (NMR), and nuclear quadrupole resonance (NQR).

But the T_p -values are scattered widely over a temperature range and there are considerable differences in the published reports as regards the high-temperature behaviour [1–23]. After prolonged heat treatment above T_p , crystals of the KDP family turn milky white, and there are

numerous microscopic cracks [1–4]. Mechanical shaking, removal of a very fine surface layer by scratching or grinding, and exposure to water vapour transform the metastable monoclinic phase back to the stable tetragonal phase at room temperature [2–7]. The transition rate seems to depend strongly on the experimental conditions.

Recently, Lee and Park reported that the high-temperature phenomenon is not a structural phase transition but an effect of thermal decomposition at the surface in KH₂PO₄ and RbH₂PO₄; their report was based on dielectric constant, thermal analysis, and thermo-microscopy data [16–19]. Ortiz *et al* supported the assertion that the high-temperature phenomena exhibited by KH₂PO₄ and RbH₂PO₄ are effects of thermal decomposition on the basis of their x-ray, thermogravimetric analysis (TGA), and DSC results [20–22]. They concluded that the high-temperature phenomena exhibited by KH₂PO₄ and RbH₂PO₄ and reflects of a physical change like a structural phase transition but to a chemical change caused by thermal decomposition such as

$$nMH_2PO_4 \rightarrow M_nH_2P_nO_{3n+1} + (n-1)H_2O$$
 (M = K, Rb)

that sets in around T_p (see figure 5 of reference [16] for the actual phase interrelations of KH₂PO₄ and RbH₂PO₄ and their thermal products), and claimed that the high-temperature anomaly should be interpreted as an *onset of partial polymerization at reaction sites at the surface of solids*. The condensation of phosphates has been the subject of much investigation in crystal chemistry, and a few excellent reviews have already appeared [23, 24].

But there is still controversy regarding whether it is the existence of a structural phase transition (tetragonal $\rightarrow T_p \rightarrow$ monoclinic) or thermal decomposition that gives rise to the high-temperature anomalies exhibited by KH₂PO₄ and RbH₂PO₄. Moreover, it is not known as yet what form the so-called high-temperature phase of KH₂PO₄ and RbH₂PO₄ takes, although many investigators have assumed monoclinic crystal systems above T_p . Therefore, we decided to investigate the high-temperature phenomena exhibited by KH₂PO₄ and RbH₂PO₄ and RbH₂PO₄ by means of thermal analyses and thermo-polarizing microscopy.

2. Experiment

Crystals of KH₂PO₄ and RbH₂PO₄ were grown from aqueous solution at 45 °C by slow evaporation of the solvent. The DSC and TGA were performed in the temperature range from room temperature to 900 °C using a Dupont 910 differential scanning calorimeter in the open atmosphere. The heating rate was kept at 5 °C min⁻¹. Fragments of crystal were used in the DSC experiment. Optical observation was carried out in the temperature range from room temperature to above T_p by using a thermo-polarizing microscope (Olympus BH-2). Specimens were studied by transmission of light along the *c*-axis. The heating rate was kept at 5 °C min⁻¹. The thermal properties were investigated and optical observations made for samples grown in the same crystallizer.

3. Results and discussion

The DSC and TGA experiments were performed with heating rates of 5 °C min⁻¹ in the open atmosphere. As shown in figures 1(a) and 1(b) and figures 2(a) and 2(b), the thermal transformation shows an endothermic peak at $T_p = 196$ °C for KH₂PO₄ and $T_p = 96$ °C for RbH₂PO₄; the onsets of weight loss at $T_p = 190$ °C for KH₂PO₄ and at $T_p = 92$ °C for RH₂PO₄ are taken to indicate the beginning of thermal decomposition. These temperatures may correspond to the so-called high-temperature transition temperature. On heating further, beyond T_p , the thermal transformations which occur at 289, 448, 645, and 801 °C in KH₂PO₄

Figure 1. (a) DSC and (b) TGA curves for KH_2PO_4 heated in air to 900 °C at a heating rate of 5 °C min⁻¹.

Figure 2. (a) DSC and (b) TGA curves for RbH_2PO_4 heated in air to 900 °C at a heating rate of 5 °C min⁻¹.

and 207, 244, 306, 437, and 810 $^{\circ}$ C in RbH₂PO₄ give rise to several endothermic peaks. The transformation temperatures corresponding to the peaks of the DSC signals indicating weight losses are commonly believed to indicate high-temperature phenomena caused by thermal decompositions such as

$$nMH_2PO_4 \to M_nH_2P_nO_{3n+1} + (n-1)H_2O$$
 (M = K, Rb). (1)

For comparison with TGA results and theory, the possible products are calculated on the basis of equation (1), and are shown in table 1 for (a) KH_2PO_4 and (b) RbH_2PO_4 . The ratio of the changed products (polymerization) and escaped products (H_2O) are related to the chemical changes in KH_2PO_4 and RbH_2PO_4 for the various possible *n*-values as follows:

• the case of n = 2, $2KH_2PO_4 \rightarrow K_2H_2P_2O_7 + H_2O$:

ratio of changed product : $\frac{M(K_2H_2P_2O_7)}{M(2KH_2PO_4)} \times 100 = 93.38\%$ ratio of escaped product: $\frac{M(H_2O)}{M(2KH_2PO_4)} \times 100 = 6.62\%$

• the case of $n = 10, 10 \text{KH}_2 \text{PO}_4 \rightarrow \text{K}_{10} \text{H}_2 \text{P}_{10} \text{O}_{31} + 9 \text{H}_2 \text{O}$:

ratio of changed product: $\frac{M(K_{10}H_2P_{10}O_{31})}{M(10KH_2PO_4)} \times 100 = 88.09\%$ ratio of escaped product: $\frac{M(9H_2O)}{M(10KH_2PO_4)} \times 100 = 11.9\%$

• the case of $n \gg 1$, $n \text{KH}_2 \text{PO}_4 \rightarrow n \text{K}_n \text{H}_2 \text{P}_n \text{O}_{3n+1} + (n-1) \text{H}_2 \text{O}$:

ratio of changed product:
$$\frac{M(K_n H_2 P_n O_n)}{M(n K H_2 P O_4)} \times 100$$
$$= \frac{M(KPO_3)_n}{M(n K H_2 P O_4)} \times 100 = \frac{M(KPO_3)}{M(K H_2 P O_4)} \times 100$$

Table 1. For various *n*-values, the masses of the possible products in (a) KH_2PO_4 and (b) RbH_2PO_4 crystals. The possible products are calculated on the basis of equation (1).

= 86.76%

(a) $\mathbf{KH}_2\mathbf{PO}_4$							
		n = 1	n = 2	n = 10		$n \gg 1$	
Atom	Mass	KH_2PO_4	$K_2H_2P_2O_7$	 $K_{10}H_2P_{10}O_{31}\\$	• • •	$(\text{KPO}_3)_n$	H_2O
K	39.10	K: 39.10	K: 39.10	 K ₁₀ : 391		K: 39.10	
Н	1.0079	H ₂ : 2.0158	H ₂ : 2.0158	H ₂ : 2.0158			H ₂ : 2.0158
Р	30.9737	P: 30.9737	P ₂ : 61.9475	P ₁₀ : 309.9731		P: 30.9737	
0	15.9994	O ₄ : 63.9976	O ₇ : 111.9958	O ₁₃ : 495.9815		O ₃ : 47.9982	O: 15.9994
		136.0871	254.1591	 1198.7348		$(118.0713)_n$	
(b) RbH ₂ PO ₄							
		n = 1	n = 2	n = 10		$n \gg 1$	
Atom	Mass	RbH_2PO_4	$Rb_2H_2P_2O_7\\$	 $Rb_{10}H_2P_{10}O_{31}\\$		$(\text{RbPO}_3)_n$	H_2O
Rb	85.4678	Rb: 85.4678	Rb ₂ : 170.935	 Rb ₁₀ : 854.678		Rb: 85.4678	
Н	1.0079	H ₂ : 2.0158	H ₂ : 2.0158	H ₂ : 2.0158			H ₂ : 2.0158
Р	30.9737	P: 30.9737	P ₂ : 61.9475	P ₁₀ : 309.9731		P: 30.9737	
0	15.9994	O ₄ : 63.9976	O ₇ : 111.9958	O ₁₃ : 495.9815		O3: 47.9982	O: 15.9994
		182.4549	346.8947	 1662.4128		$(164.4397)_n$	

ratio of escaped product: $\frac{M((n-1)H_2O)}{M(nKH_2PO_4)} \times 100$ $\approx \frac{M(nH_2O)}{M(nKH_2PO_4)} \times 100 = \frac{M(H_2O)}{M(KH_2PO_4)} \times 100 = 13.24\%$ • the case of n = 2, 2RbH₂PO₄ \rightarrow Rb₂H₂P₂O₇ + H₂O: ratio of changed product: $\frac{M(Rb_2H_2PO_7)}{M(2RbH_2PO_4)} \times 100 = 95.06\%$ ratio of escaped product: $\frac{M(H_2O)}{M(2RbH_2PO_4)} \times 100 = 4.94\%$ • the case of n = 10, 10RbH₂PO₄ \rightarrow Rb₁₀H₂P₁₀O₃₁ + 9H₂O: ratio of changed product: $\frac{M(Rb_10H_2P_{10}O_{31})}{M(10RbH_2PO_4)} \times 100 = 91.11\%$ ratio of escaped product: $\frac{M(9H_2O)}{M(10RbH_2PO_4)} \times 100 = 8.89\%$ • the case of $n \gg 1$, $nRbH_2PO_4 \rightarrow nRb_nH_2P_nO_{3n+1} + (n-1)H_2O$: ratio of changed product: $\frac{M(Rb_nH_2P_nO_n)}{M(nRbH_2PO_4)} \times 100$ $= \frac{M(RbPO_3)_n}{M(nRbH_2PO_4)} \times 100 = \frac{M(RbPO_3)}{M(RbH_2PO_4)} \times 100 = 90.13\%$ ratio of escaped product: $\frac{M((n-1)H_2O)}{M(nRbH_2PO_4)} \times 100$

As shown in figures 1(a) and 1(b) and figures 2(a) and 2(b), this weight loss is indicative of the formation of various polymeric intermediates, during the course of dehydration to the final formation of KPO₃ and RbPO₃. The final products can be changed from KH_2PO_4 to KPO₃ (weight loss 11.9%) above 320 °C and from RbH₂PO₄ to RbPO₃ (weight loss 9.8%) above 340 °C, because for the final products the calculated value and the measured weigh loss are the same. Also, the onsets of weight loss at 185 °C in KH₂PO₄ and at 85 °C in RbH₂PO₄ are taken as indicating the beginning of thermal decomposition. These temperatures may correspond to the so-called high-temperature transition temperature. On further heating, one finds a semi-plateau region, accompanied by about 3% weight loss between 200 °C and 250 °C in KH₂PO₄ and about 3.4% weight loss between 150 °C and 200 °C in RbH₂PO₄. For any given n-value, the weight losses at the semi-plateau are not the same as the values calculated for the intermediate products. But the temperature regions (KH₂PO₄: 196 °C-350 °C; RbH₂PO₄: 96 °C–350 °C) over which the weight loss changes in KH_2PO_4 and RbH_2PO_4 are difficult to explain, since the processes of polymerization are strongly dependent on temperature and the changed product is unstable. If we respect the realistic phase relationships of equation (1), the HTP slightly above T_p is not a single phase of MH₂PO₄, but a mixture consisting mainly of MH_2PO_4 and $M_2H_2P_2O_7$. The temperature regions of changing weight loss in KH_2PO_4 and RbH₂PO₄ could be relating to mixed phases. We think that the high-temperature phenomena exhibited by KH_2PO_4 and RbH_2PO_4 near T_p should be interpreted as indicating the onset of a partial polymerization at reaction sites on the surface of solids, such as that represented by equation (1).

Many investigators reported that on heating above T_p the crystal symmetry seems to change from tetragonal with space group $I\overline{4}2d$ -D¹²_{2d} to monoclinic with space group $P2_1$ -C²₂

or $P2_1/m-C_{2h}^2$ for KH₂PO₄ and $P2_1-C_2^2$ or $P2_1/m-C_{2h}^5$ for RbH₂PO₄ [2, 3, 5, 7]. However, detailed structural analyses including atomic coordinates have not been thoroughly established. On the other hand, the crystal structures of possible intermediate and final products obtained by heat treatment have been reported also to be monoclinic with space group $C2/c-C_{2h}^6$ for K₂H₂P₂O₇· $\frac{1}{2}$ H₂O, $P2_1/a-C_{2h}^5$ for (KPO₃)_n, and $P2_1/n-C_{2h}^5$ for (RbPO₃)_n [25]. Also, for KH₂PO₄ and RbH₂PO₄, mechanical shaking, removal of a very fine surface layer by scratching or grinding, and exposure to water vapour transform the metastable monoclinic phase back to the stable tetragonal phase at room temperature, as shown in figure 3.

Figure 3. A schematic representation of the phase transformation in KH₂PO₄ and RbH₂PO₄.

In order to clarify whether the high-temperature phenomena exhibited by KH_2PO_4 and RbH_2PO_4 at around T_p are due to the structural phase transition or due to partial thermal decomposition, optical observation was carried out by using a polarizing microscope. Figures 4 and 5 are (a) micrographs of the surface and (b) polarizing micrographs of interference figures in KH_2PO_4 and RbH_2PO_4 crystal along the *c*-axis. It has been observed by thermo-polarizing microscopy that until T_p is exceeded, uniaxial interference figures are seen for the crystals of KH_2PO_4 and RbH_2PO_4 . So, the crystal systems of KH_2PO_4 and RbH_2PO_4 above T_p cannot be monoclinic phases because monoclinic crystal will show not uniaxial interference figures but biaxial interference figures of KH_2PO_4 and RbH_2PO_4 and RbH_2PO_4 . So, the crystal systems of KH_2PO_4 and RbH_2PO_4 above T_p cannot be monoclinic phases because monoclinic crystal will show not uniaxial interference figures but biaxial interference figures of KH_2PO_4 and RbH_2PO_4 and RbH_2PO_4 and RbH_2PO_4 and RbH_2PO_4 near T_p . As the temperature is increased further, these cracks merge together, giving rise to a number of cracks.

Microcracks appearing upon heating above T_p have already been seen (see references [1–4]). After prolonged heat treatment near T_p , the sample changes from transparent and colourless to milky white. Recently, Park *et al* reported that microcracks appeared at the surface of KH₂PO₄ near 180 °C (T_p) [18], and the appearance of cracks near 112 °C (T_p) in RbH₂PO₄ [19] is similar to that near 180 °C in KH₂PO₄.

According to Lee [16], this can be accounted for as being due to the formation and liberation of water molecules. The dehydration may start at reaction sites distributed on the surface of solids. As the temperature rises above T_p or the sample is tempered at constant temperature above T_p , more monomers are reacted and internal pressure due to water molecules may increase. As H₂O molecules formed near the surface or in the interior migrate to the surface, the increased water vapour pressure can cause the surface to become microcracked. The physical origin of this may be the hydrogen-bond breaking occurring due to the thermal decomposition. The bond breaking occurs where the energy deficiency is supplied by thermal activation. This phenomenon can be understood in terms of formation and growth of cracks and according to chemical reactions such as that described by equation (1). Numerous observations confirm that decomposition of solid reactants is generally initiated in defective regions of the crystal such as at the surface or, more specifically, at points of emergence of dislocations at the surface. Likewise, nuclei of solid product, $M_n H_2 P_n O_{3n+1}$ (M = K, Rb), are thus formed,

Figure 4. The effects of heat treatment on (a) the surface morphology and (b) the interference figure of KH_2PO_4 along the *c*-axis. The heating rate was kept at 5 °C min⁻¹.

the gaseous product escapes, and the resulting disruption causes strain in the neighbouring regions of unreacted MH_2PO_4 (M = K, Rb) and internal pressure due to $M_nH_2P_nO_{3n+1}$ (M = K, Rb) polymer may increase. The interpretation is similar to that in the cases of thermal decomposition of TlH₂PO₄ [26] and (NH4)₂SO₄ [27] crystals. So, the monoclinic structures of the HTP might stem partly from the monoclinic structures of intermediate and/or final products.

4. Summary

In summary, the high-temperature phenomena exhibited by KH_2PO_4 and RbH_2PO_4 can be explained as follows. The high-temperature phenomena exhibited by KH_2PO_4 and RbH_2PO_4

Figure 5. The effects of heat treatment on (a) the surface morphology and (b) the interference figure of RbH₂PO₄ along the *c*-axis. The heating rate was kept at 5 $^{\circ}$ C min⁻¹.

have been investigated by differential thermal analysis, thermogravimetric analysis, and thermo-polarizing microscopy. The thermal transformations which appear at $T_p = 196$ °C in KH₂PO₄ and $T_p = 96$ °C in RbH₂PO₄ are endothermic in addition to showing weight loss. Upon heating further, beyond T_p , the thermal transformation gives rise to several endothermic peaks and weight loss in RbH₂PO₄. It has been observed by thermo-polarizing microscopy that until T_p is exceeded, uniaxial interference figures are seen for the crystals of KH₂PO₄ and RbH₂PO₄, with cracks and chemical change at the surfaces of KH₂PO₄ near $T_p \sim 192$ °C and RbH₂PO₄ near $T_p \sim 92$ °C. The high-temperature phenomena exhibited by KH₂PO₄ and RbH₂PO₄ near T_p could indicate not a change from tetragonal to monoclinic structure but a chemical decomposition at the surface of the crystals such as $nMH_2PO_4 \rightarrow M_nH_2P_nO_{3n+1} + (n-1)H_2O$ (M = K, Rb).

Acknowledgments

This work was supported in part by grant No 2001-1-11400-012-1 from the Basic Research Programme of the Korea Science and Engineering Foundation, and in part by the Brain Korea 21 Programme of the Ministry of Education, Project No D-0025.

References

- [1] O'Keeffe M and Perrino C T 1967 J. Phys. Chem. Solids 28 211
- [2] Blinc R, O'Reilly D E, Peterson E M and Williams J M 1969 J. Chem. Phys. 50 5408
- [3] Itoh K, Matsubayashi T, Nakamura E and Motegi H 1975 J. Phys. Soc. Japan 39 843
- [4] Grunberg J, Levin S, Pelah I and Gerlich D 1972 Phys. Status Solidi b 49 857
- [5] D'yakov V A, Koptsik V A, Lebedeva I V, Mishchenko A V and Rashkovich L N 1973 Kristallografiya 18 1227 (Engl. Transl 1974 Sov. Phys.-Crystallogr. 18 769)
- [6] Seliger J, Zagar V and Blinc R 1993 Phys. Rev. B 47 14753
- [7] Shapira Y, Levin S, Gerlich D and Shapiro S 1978 Ferroelectrics 17 459
- [8] Pereverzeva L P, Pogosskaya N Z, Poplavko Yu M, Pakhomov V I, Rez I S and Sil'nitskaya G B 1971 Fiz. Tverd. Tela 13 3199 (Engl. Transl. 1972 Sov. Phys.–Solid State 13 2690)
- [9] Rapoport E 1970 J. Chem. Phys. 53 311
- [10] Rapoport E, Clark J B and Richter P W 1978 J. Solid State Chem. 24 423
- [11] Baranowski B, Friesel M and Lunden A 1986 Z. Naturf. a 41 981
- [12] Baranowski B, Friesel M and Lunden A 1987 Z. Naturf. a 42 565
- [13] Dalterio R A and Owens F J 1988 J. Phys. C: Solid State Phys. 21 6177
- [14] Baranov A I, Khiznichenko V P and Shuvalov L A 1989 Ferroelectrics 100 135
- [15] Choi B-K and Chung S C 1994 Ferroelectrics 155 153
- [16] Lee K-S 1996 J. Phys. Chem. Solids 57 333
- [17] Park J-H, Lee K-S, Kim J-B and Kim J-N 1996 J. Phys.: Condens. Matter 8 5491 Park J-H, Lee K-S, Kim J-B and Kim J-N 1997 J. Phys.: Condens. Matter 9 9457
- [18] Park J-H, Lee K-S and Kim J-N 1998 J. Korean Phys. Soc. (Proc. Suppl.) 32 S1149
- [19] Park J-H, Lee K-S and Kim J-N 1998 J. Phys.: Condens. Matter 10 9593
- [20] Ortiz E, Vargas R A and Mellander B-E 1998 J. Phys. Chem. Solids 59 305
- [21] Ortiz E, Vargas R A, Mellander B-E and Lunden A 1997 J. Chem. 71 1797
- [22] Ortiz E, Vargas R A, Cuervo G, Mellander B-E and Gustafsson J 1998 J. Phys. Chem. Solids 59 1111
- [23] Vargas R A and Torijano E 1993 Solid State Ion. 59 321
- [24] Durif A 1995 Crystal Chemistry of Condensed Phosphates (New York: Plenum)
- [25] Thilo E 1962 Condensed Phosphates and Arsenates (Advances in Inorganic Chemistry and Radiochemistry vol 4) ed H J Emeleus and A G Sharpe (New York: Academic) pp 1–75
- [26] Lee K-S, Park J-H, Kim K-B, Kim J-B and Kim J-N 1997 J. Phys. Soc. Japan 66 1268
- [27] Kim J-L and Lee K-S 1996 J. Phys. Soc. Japan 65 2664